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ABSTRACT

Facial expression recognition suffers big pose and occlusion
in real world and attention mechanism is deployed widely
to cope with these challenges. But most previous attention-
based methods are inadequate in locating crucial expression-
related regions precisely and capturing useful facial expres-
sion features comprehensively. For these reasons, we present
a novel mask-based attention parallel network (MAPNet).
Firstly, mask-based attention module that locates expression-
related regions is constructed from binary mask extracted by
key landmark detection. Secondly, the designed parallel net-
work embeds mask-based attention modules into its different
layers to acquire comprehensive facial expression features.
Thirdly, the extracted parallel features are divided into sev-
eral detached blocks from spatial dimension to predict facial
expression independently. Finally, the expression label is ac-
quired by combining two predictions of the parallel network
and a new loss function is designed to weigh unbalanced fa-
cial expression distribution. We validate our method on three
popular in-the-wild datasets and the results demonstrate that
our MANPnet outperforms previous state-of-the-art methods
among RAFDB, AffectNet and FEDRO.

Index Terms— Facial expression recognition, mask-
based attention parallel network, facial expression features

1. INTRODUCTION

Facial expression, a primary form of human communication,
varies between different people and difference in background,
pose, lighting. One kind of public facial expression dataset
contains mainly lab-controlled images acquired by acting dif-
ferent expressions by subjects in the laboratory. Another type
is in-the-wild dataset captured in uncontrolled environments,
in which facial images are more realistic but more difficult to
recognize than that collected in lab condition.

Under in-the-wild scenarios, facial expression recogni-
tion (FER) now has many primary applications such as social
robot [1], offline education [2] and safe driving [3]. But
these applications still meet some disruptive factors like oc-
clusion and big pose variation, which hinder helpful features
extraction and reduces FER prediction performance greatly.
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Inspired by the attention mechanism of human, many
methods have applied attention mechanism to alleviate these
disruptive factors for in-the-wild facial expression datasets,
which focus on reserving useful facial expression features
and eliminating irrelevant information [4, 5].

However, on utilizing this attention mechanism, there are
some limitations in previous works. Firstly, facial expres-
sions are related to whole facial area and have no relevance
with background and other disturbance. Therefore, it is inac-
curate to generate attention module by neutral network auto-
matically like in [6]. Secondly, several studies [7, 8] adopted
region-level attention to examine the importance of different
regions. But these regional attention modules sometimes are
mislead and learn useless features due to regional occlusion
and big pose. Thirdly, attention module is always applied into
one deep layer of the network backbone [9], which means that
critical high level features are enhanced only once while low
level discriminative features are neglected. Although one ap-
proach [10] applies attention modules into its both low and
high layers in a cascaded way, features can not complement
each other like in a parallel network structure. Additionally,
some of these methods transport whole acquired features to
global adaptive pooling layer directly [11].But each spatial
split block of the final features has different significance to
final emotion label, some blocks are more crucial.

To alleviate the above problems, this paper presents a
novel mask-based attention parallel network (MAPNet) to
enhance features extraction and expression classification.
The main contributions are summarized as follows:

(1) Parallel network structure is built to learn features dif-
ferently and combine independent prediction of each branch
together, which improves the robustness of model.

(2) Mask-based attention modules are embedded into both
the shallow layer and the deep layer of the MAPNet to con-
centrate on expression-related features extraction precisely.

(3) Features of each parallel branch are split from height
and width dimension and different weights are applied to each
split block to strengthen expression classification.

(4) A new loss function is designed to alleviate the nega-
tive impact of unevenly distributed expression categories.

The rest of this paper is organized as follows. Section 2
delivers the proposed method of MAPNet. Section 3 presents
the experimental setup and result. Section 4 gives conclusion.
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Fig. 1. MAPNet contains of main net in blue color and auxiliary net in green color. Main net embeds mask-based attention
module into its fourth layer to strengthen high level features extraction while auxiliary net applies attention module into its first
layer to enhance low level features extraction. These two branches are then split from height and width dimension to predict
expression label independently. The final prediction is obtained by combining label of each branch together.

2. PROPOSED APPROACH

2.1. Framework overview

The MAPNet architecture is built based on the backbone of
the residual net (ResNet) [12], which is constructed from
lower-level convolutional layers, four cascaded structured
CNN blocks and a fully connected layer.

To extract more expression-related high level features,
mask-based attention module is embedded into the fourth
CNN block of main net to strengthen deep layer features
extraction. After that, features are split into several blocks
from the height dimension and adaptive average pooling
(AP) is applied to each block. Two cascaded fully connected
(FC) layers are further used to reduce features dimension
from 2048 to 7 and dropout is utilized. Then, the output of
each block is fed into a Softmax layer to predict the expres-
sion label. Finally, predicted labels of these split blocks are
integrated together through applying different weight coeffi-
cients. The formula is as follow:

0; =1

where i is the i-th split block, N is the number of total blocks,
P is the final label prediction of this branch, p; is the predicted
label and §; is the coefficient of each block. §; is usually set
to a larger value of the inner block while small coefficient is
given to the outer block.

Different from the main net, auxiliary net embeds mask-
based attention module into the first CNN blocks to reinforce
extracting low level useful features. Then, the extracted fea-
tures are divided into several blocks from the width dimension
to predict emotional label separately. The predicted label of
auxiliary net is also acquired by the Equation (1).

The final predicted label Pr is obtained by combining the
main net predicted label Pj; and the auxiliary net predicted
label P4. The equation can be denoted as follow, where a and
b are set to 0.5 respectively because two branches have same
significance and they complement each other.

Pr=ax Py +bx Py 2)
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2.2. Mask-based attention module

Facial expression is closely related to whole face regions. It
is easily influenced by the background information and other
regional occlusions. To make our parallel model focus on
the expression-related areas, we design mask-based attention
module to pay more attention to the whole face area. First,
we use the face landmarks detection method PFLD [13] to
get 98 key facial landmarks as shown in Fig.2 (b). Then, we
get one general mask M which highlights the whole face area
as shown in Fig.2 (c). Furthermore, we generate mask-based
attention module through Equation (3).

F = Relu(X « (ax M+ ), a+8=2 3)

where X is the feature generated by the former layer of the
backbone, M is the obtained binary mask, « and 3 are coef-
ficients of the mask M and extracted feature X respectively.
The strengthened feature is activated by the rectified linear
unit (ReLU) and transported to next layer.

(a) Original image

(b) 98 key points  (c) Binary mask M

Fig. 2. PFLD is used to locate 98 key facial landmarks (b) to
further generate binary mask (c) of whole facial region.

To visualize the function of mask-based attention mod-
ule, the original and masked features of different layers are
compared through heatmaps. As shown in Fig.3, the origi-
nal shallow extracted features after layer 1 contains disturb-
ing background information while the masked shallow fea-
tures precisely focus on the expression-related area. In Fig.4,
it is found that the masked high level features after layer 4
pay close attention to the inner pixels while the outer useless
pixels are weaken.
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Fig. 4. High level feature comparison

2.3. Loss function

Facial expression datasets collected in the real world are
mostly imbalanced. To weight the inhomogeneous distri-
bution of facial expression and achieve competitive perfor-
mance, we design a novel weighted cross-entropy loss:

L(§.) = wi * (~log () __ )
> =1 exp(9;)
where gy is the output probability of the expression, i is the
ground-truth label of the expression, K is the number of total
classes. w; is the weight of the i-th class, which demotes the
penalty factor of each class and is calculated as
Navg

N;
where Ny, is the average number of the training samples and
N; is the number of samples of each i-th class. ~ depends
on the undistributed level. By applying the new weighted
cross-entropy loss, the unbalanced distribution level of train-
ing samples of each class can be alleviated and better predic-
tion performance can be achieved.

Because of the special parallel structure design, the final

loss L is combined by the main net loss Lj; and the auxil-
iary net loss L 4. The formula is as follow:

LF(Q» 1) =ux* LIW(Qv 7’) + v LA(Z?» Z) (6)

where u is the loss coefficient of the main net and v is the loss
coefficient of the auxiliary net. Both of them are set to 0.5.

i€[LK], 055v<3 (5

w; =

3. EXPERIMENTS
3.1. Implementation details

Our MAPNet was trained on Pytorch framework and was ini-
tialized with the weights pre-trained on ImageNet. Stochastic
Gradient Descent (SGD) was adopted as optimizer with the
momentum of 0.9 and the weight-decay of 0.0005. The learn-
ing rate was initialized as 0.01 and was decreased by multi-
plying with 0.1 after 4 epochs to discover a suitable learning
rate. The mini-batch size was set to 128. During training, only
random horizontal flipping was used for data augmentation.

3.2. Performance comparison

To verify the effectiveness of our proposed method under nat-
ural scenarios, we evaluate MAPNet on 3 manually annotated
in-the-wild datasets. All the validation results are compared
with the previous state-of-the-art methods.

Previous Methods RAFDB AffectNet FEDRO
WGAN [14] 83.49% 59.73% /
DLP-CNN[15] 84.13% / /
gACNNJ16] 85.07% 58.78% 66.50%
DFER-Net[17] 85.13% / /
OAENet[18] 85.69% / /
VSAN [11] 86.20% / /
RANI[S8] 86.90% 59.50% 67.98%
SCN [5] 87.03% 60.23% /
OADNJ[19] 87.16% 61.89% 71.17%
HERO [20] / 62.11% /
LLHF [21] / 63.31% /
LAENet-SA [10] / 64.09% 68.25%
MAPNet(ours) 87.26% 6291%  71.50%
MAPNet*(ours) / 64.09 % /

Table 1. Test set performance comparison on three datasets

RAFDB [15] is one of the widely used expression datasets
that contains 29672 in-the-wild facial images. We choose
12271 as training samples and 3068 as testing samples an-
notated with 7 emotional categories singly.

Table 1 shows the performance comparison in RAFDB
dataset. MAPNet achieves 87.26% in terms of total accuracy,
improving over OADN by 0.10% and RAN by 0.36%. Fig.5
(a) shows the confusion matrix of RAFDB. It is observed that
Fear and Disgust are the two most confusing expressions,
where Fear is easily confused with Surprise because of sim-
ilar facial appearance while Disgust is mainly confused by
Neutral due to subtle difference of these two expressions.

AffectNet [22] is the largest in-the-wild dataset for FER
which has around 400000 manually annotated facial expres-
sion images. We only choose 33803 images as the training set
and 3500 images in 7 categories as the validation set.

Table 1 also presents the performance of MANPnet in Af-
fectNet dataset. Our model achieves the accuracy of 62.91%,
outperforms some competitive methods while using far less
samples as training set. When we train our MAPnet* on
both AffectNet and RAFDB, its performance rises to 64.09%,
which is equal to the performance of LAENet-SA. Fig.5 (b)
presents the confusion matrix of the AffectNet. The Happy
expression has the highest prediction rate, followed by Fear.
Sad, Neutral and Disgust are three difficult expressions to
classify with the accuracy of 59%.

FEDRO [16] has 400 in-the-wild images totally and every
image in this dataset contains real occlusions and varied in
position. We train our model on the joint training data of
AffectNet and RAFDB and test on the FEDRO.
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Fig. 5. Confuse matrix analysis

Table 1 delivers the experimental results on the FEDRO.
Our MAPNet achieves the best performance of 71.50%, sur-
passing the OADN by 0.37% and LAENet-SA by 3.25%
greatly. From the confusions matrix in Fig.5 (c), we can
see that Sad has the highest accuracy of 82%, while Disgust
has the lowest accuracy of 51% due to the lack of training
samples. 29% of Surprise are easily confused with Fear.

3.3. Abalation study

In this section, we conduct ablation study on three in-the-wild
datasets to validate different functional blocks of our MAPNet
as shown in Table 2 and make an analysis of the number of
split blocks and the weight of attention module.
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Baseline PS MAM WCL RAFDB AffectNet FEDRO
v 84.48% 61.77% 64.25%
v v 8491% 62.60% 66.50%
v v v 86.34% 63.69% 70.00%
v v oy v 8726% 64.09% 71.05%

Table 2. Abalation study

Parallel Structure (PS): We first study the parallel struc-
ture design of our MAPNet without attention module and
weighted cross-entropy loss. It is observed that PS improves
the baseline by 0.43%, 0.83% and 2.25% of RAFDB, Af-
fectNet and FEDRO respectively, which results from comple-
mentary features extraction of two parallel branches.

Mask-based Attention Module (MAM): Mask-based at-
tention module is added to parallel structure. It is obvious that
MAM embedded in two parallel structures significantly im-
proves accuracy by 1.43% on RAFDB, 1.09% on AffectNet
and 3.50% on FEDRO, which validates that MAM not only
focus on critical high level features in main branch but also
extracts more useful low level features in auxiliary branch.

Weighted Cross-entropy Loss (WCL): Our newly de-
signed weighted cross-entropy loss is deployed as model loss
function. From Table 2, we can find that WCL increases pre-
diction accuracy by 0.92%, 0.40%, 1.05% on RAFDB, Af-
fectNet and FEDRO respectively, due to its practical function

(a) Blocks number K (b) Mask weight o
Fig. 6. Influencing factors analysis

Analysis of split blocks: In parallel network structure,
we divide the extracted feature maps into K blocks and train
expression classifier of each block independently. K=1 means
that the extracted feature is not split. Best accuracy appears
at K=4 when higher coefficients are given to two inner blocks
as shown in Fig.6 (a). Low accuracy occurs at K=2 because
its two split blocks have same weight coefficients.

Analysis of attention module weight: Our mask-based
attention module combines the original features and masked
features as defined in Equation (3). The weight « controls
the relative importance of masked features. From Fig.6 (b),
we can see that mask-based attention module obtains the best
performance at a=0.8 since more expression-related features
are activated at this point.

4. CONCLUSION

In this paper, we proposes a novel mask-based attention paral-
lel network (MAPNet) for in-the wild facial expression recog-
nition to settle regional occlusion and big pose problems. The
network is constructed of two parallel networks which are em-
bedded with mask-based attention modules in different CNN
layers to extract expression-related features. Feature splitting
block is utilized to reinforce expression classification and a
new loss function is designed to weight unbalanced category
distribution. The proposed method MAPNet has achieved
state-of-the-art accuracy with 87.26%, 64.09% and 71.50%
on RAFDB, AffectNet and FEDRO respectively.
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